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FOREWORD

This report was prepared by Launch and Entry Thermodynamics of the Flight Technology--

Engineering organization, Research and Development Division, Lockheed Missiles &

Space Company, for the George C. Marshall Space Flight Center (MSFC) of the National

Aeronautics and Space Administration (NASA).

The work was performed under NASA Contract NAS 8-11525, "Theoretical and Experi-

mental Studies of Zero-G Heat-Transfer Modes." The contract was under the technical

supervision of Gordon K. Platt and Frank E. Swalley, Fluid Mechanics and Thermodyna-

mics Branch, Propulsion Division, Propulsion and Vehicle Engineering Laboratory,

NASA/MSFC.

The report summarizes the principal results obtained during the period from 1 June 1965

through 29 August 1966, which constitutes the third and final phase of the contract. This

summary report and those documenting the first and second phases of the study comprise

the contract final report.

The authors wish to express their appreciation to Dr. G. C. Vliet, Dr. R. G. Schwind,

and Mr. R. L. Phares of the LMSC Aerospace Sciences Laboratory for their cooperation

and assistance throughout the study.
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NOMENCLATURE

A

b
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C
P

C
V

D

f

F

:Fr

g

Gr R

h*

h

H

H t

I

J

k

L

L w

m

rh

area, ft 2

slit width, cm

Bond number, g R2p/a

specific heat at constant pressure, Btu/ibm-°F

specific heat at constant volume, Btu/Ib _o Fm
diffusion coefficient, ft2/sec

enthalpy function defined in Eq. (2. 4), Btu/Ib m

enthalpy function defined in Eq. (2: 5), Btu/Ib m , also, liquid height above
datum at r = 0

Froude number, u2/gR

local acceleration, ft/sec 2 (or cm/sec 2)

modified Grashof number for liquids, gqwflH4/kL v 2

modifiedGrashofnumberfor vapor, qu R4/ 2
Grashof number for vapor, gfiv (Tuhtr - Tu ) R3/V2v

specific enthalpy, Btu/Ib m

heat transfer coefficient, Btu/ff2-see -° F

effective height of heated liquid sidewall, ft, also, integration step size

effective total height of liquid, ft

energy integral defined in Eq. (2.19)

mechanical equivalent of heat, 7 7 8 ft-lbf/Btu

thermal conductivity, Btu/ft-sec -° F

liquid height above stable interface

effective height of heated ullage sidewall, ft

effective total height of ullage, ft

mass, 110m

mass transfer rate, ibm/sec
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U
m
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S

U*

U

V

V

W

We

X

Y

Z

Z

5

A

A,

mass transfer rate, per unit interface area, lbm/ft2-sec

exponent in Eq. (2.24)

Nusselt number, hR/k

pressure, lbf/ft 2

Prandtl number, #ep/k
heat flux, Btu/ft2-see

heat flux to interface from liquid film

heat flux to ullage

heat flux to vapor film from interface

radial distance normalized by tank radius

tank radius, ft

modified Rayleigh number, Gr_ Pr

gas constant, Btu/lb m -° R

time, sec

temperature, oR or ° F

velocity, ft/sec or cm/sec

maximum boundary layer or jet velocity, cm/sec

maximum surface radial velocity, cm/sec

slip velocity in boiling boundary layer, Uv/U L

normalized surface velocity, u/u m (denoted as V in program language)

specific volume, ft3/lb
m

volume, ft 3

vapor concentration

Weber number, u 2 Rp/_

boundary layer run length

coordinate normal to wall, ft

distance from liquid surface, ft

compressibility factor

mean vapor fraction in boiling boundary layer

coefficient of thermal expansion, ° R -1

film thickness, ft, or jet thickness, cm

height (depth) of stratified layer, ft

stratified layer thickness with no bottom heating, ft
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0

X

P

P

p*

ff

T

Subscripts

a

av

b

B

BL

f

L

o

P

S

t

T

TR

U

uhtr

V

W

1

tank longitudinal strain coefficient, ft2/lbf

defined in Eq. (3.4)

liquid-wall contact angle

latent heat of vaporization, Btu/lb m

dynamic viscosity, lbm/ft-sec

kinematic viscosity, ft2/sec

density, lbm/ft3 or gm/Cm3

density ratio in boiling boundary layer, pv/PL

surface tension, dyne/em .

capillary response time, see

mass transfer factor, defined in Eqs. (2.12) and (2.15)

ambient (external to tank)

average

boiling

bottom

boundary layer

interface or saturation

liquid or limiting value

initial or reference quantity

constant pressure or pressurant

liquid surface

total

constant temperature

transitional

ullage

ullage heater

vapor

heated liquid sidewall

local condition
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Section 1

INTRODUCTION AND SUMMARY

Liquid-ullage coupling may be broadly described as the thermodynamic interaction

between the liquid and vapor phases of a contained fluid system. This phenomenon is

influenced by the energy transport modes in each of the fluid phases, and is a con-

trolling factor in the self-pressurization of a closed, heated container. Stratification

is defined as the development of temperature gradients in a contained fluid. Stratifi-

cation can be caused by a free-convection boundary layer on the wall which carries

heated fluid to the top of the container, forming a growing layer of liquid which is at

a higher temperature than the bulk of the liquid. Of particular interest is the relation

between liquid stratification and the energy transfer at the liquid-vapor interface.

These phenomena are of particular importance in cryogenic propellant tanks and can

have a significant effect on vehicle design and operation. The design of venting devices,

pressurization systems, insulation methods, propellant feed pumps, and tank struc-

tures may be substantially influenced by these phenomena.

An additional problem associated with large cryogenic propellant tanks is that of

"boundary layer breakthrough"; i.e. , the momentum existing in the free-convection

boundary layer can cause instability of the liquid-ullage interface at the time of engine

shutdown. To ensure reliable designs, and to avoid excessive penalties due to con-

servatism in prediction methods, sound analytical models and experimental data appli-

cable to the conditions of interest are required.

This document presents the results of the analytical and experimental work carried out

by the Lockheed Missiles & Space Company (LMSC) for the NASA-George C. Marshall

Space Flight Center (MSFC) on the problems of liquid-ullage coupling and boundary

layer breakthrough, under Phase III of the contract, entitled "Theoretical and Experi-

mental Studies of Zero-G Heat Transfer Modes. " The work reported was conducted

1-1
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over a 14-month period, from 1 June 1965 through 31 July 1966. The results of Phases

I and II of the Study were reported in Refs. 1 and 2, respectively.

The major objective of the study has been to perform theoretical analyses of the heat

transfer phenomena occurring in cryogenic liquids and to derive an analytical model for

predicting temperature stratification and ullage pressure in cryogenic tanks. Auxiliary

objectives have been to conduct stratification and liquid-ullage coupling experiments in

noncryogenic fluids to demonstrate the validity of scaling laws for stratification and to

check the analytical models developed, and to perform drop-tower experiments to con-

firm the criteria derived to define the boundary layer breakthrough problem.

The highlights of Phase III of the study are summarized in this Section.

I. 1 LIQUID-ULLAGE COUPLING ANALYSIS

A mathematical model and corresponding analysis which describe liquid-ullage coupling

have been developed in Phase II of this study. In Phase III, a similar but more exten-

sive model has been formulated which includes arbitrary pressurization with a noncon-

densible gas, bottom heating, and nucleate boiling in the boundary layer. In addition,

the model considers transition from laminar to turbulent flow in the free-convection

boundary layer, tank volume change due to tank strain, and arbitrary end geometry for

a cylindrical tank. The results of the analysis are expressed in terms of a system of

equations which can be solved simultaneously to give the ullage pressure and tempera-

ture, intefacial mass transfer, the liquid surface and bulk temperatures, and the liquid

level, as functions of time. A FORTRAN computer program which solves this system

of equations has been written.

i. 2 LIQUID-ULLAGE COUPLING EXPERIMENTS

The liquid-ullage coupling models which have been developed contain three parameters

which must be experimentally determined: the vapor-side interface heat-transfer coef-

ficient, hv, the liquid-side interface heat-transfer coefficient, hL, and the

1-2
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liquid energy integral I. An experimental program has been conducted to establish the

validity of the mathematical models and to develop empirical correlations for the three

required parameters. Experiments have been conducted over a range of ullage and

liquid heat fluxes using water and Freon 11 as the working fluids. Tests also have been

conducted with nucleate boiling in the boundary layer and with controlled ullage venting.

Predictions from the simpler liquid-ullage coupling model were compared with the

, h L and I which result in theexperimental data to determine those values for h v

best agreement between the model and the data. This was also done for the applicable

hydrogen data (obtained from MSFC tests in a full-scale S-IV tank). The resulting

values for the liquid Nusselt number were correlated as a function of the liquid modified

Grashof number, and the vapor Nusselt number was correlated with vapor modified

Grashof number. A preliminary correlation of the energy integral was obtained using

the liquid modified Grashof number and a dimensionless form of the latent heat of

vaporization.

In general, predictions obtained from the model using the appropriate values for h V'

hL, and I agreed well with the data. This was true for runs both with and without

boiling in the liquid boundary layer and for runs with controlled ullage venting.

I. 3 INTERFACE STABILITY ANALYSIS

In Phase I of the study, the influence of surface velocities on the shape of the meniscus

was studied analytically through numerical solutions of the governing differential equa-

tion. The numerical integration scheme has been modified to determine, by an iteration

technique, the limiting Weber number above which solutions cannot be obtained within

the numerical model used. The results of this modified program indicate that the

surface velocity distribution has a significant effect on the calculated limiting Weber

number.

1-3

LOCKHEED MISSILES & SPACE COMPANY



1.4 INTERFACE STABILITY EXPERIMENTS

Experiments were performed to obtain data on the effect on free surface stability of

convective flow patterns in a liquid under reduced gravity conditions. A pump-

operated recirculating flow tank was used to generate a range of flow conditions quali-

tatively simulating the free-convection boundary layer and associated free surface

flow in a partially-full cryogenic propellant tank. Tests at standard gravity were

employed to study the free surface velocity distribution, and drop-tower tests at zero

and reduced gravity exhibited the effect of these flow patterns on interface stability.

From motion pictures taken during the drop-tower experiments, it was observed that

free surface Weber numbers greater than 50 resulted in an unstable interface when the

gravity level was reduced to zero. The stabilizing effect of a finite acceleration was

evident, and very little distortion of the free-surface shape occurred at a Froude

number of 0.2.

ii
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Section 2

LIQUID-ULLAGE COUPLING

When a closed container which is partially filled with a saturated liquid is heated, mass

and energy transfer will occur at the liquid-vapor interface, and the pressure and tem-

perature within the container will change. The complicated physical phenomena which

occur in such a container are referred to as "liquid-ullage coupling." A mathematical

model and corresponding analysis which describe liquid-ullage coupling were developed

and presented in Ref. 2. During the present reporting period, this model was modified

to extend the range of application. This section compares this modified model with

data obtained from a series of liquid-ullage coupling tests. In addition, a new liquid-

ullage coupling model, similar to, but more extensive than, that of Ref. 2, will be

presented.

2.1 ANALYSIS

This subsection describes both the modifications to the original liquid-ullage coupling

model, with which the experimental data are compared, and the new model which con-

siders a two-component ullage and nonperfect fluids.

2.1.1 Extension of Original Model

The liquid-ullage coupling model developed during Phase II of this study (Ref. 2) has

been extended to consider:

* Mass addition of the fluid vapor at an arbitrary temperature

• The effect of nucleate boiling in the boundary layer on the rate of liquid

stratification

2-1

LOCKHEED MISSILES & SPACE COMPANY



For the first change, the ullage energy balance equation (Eq. 5.4 of Ref. 2) was modified

to include an arbitrary pressurant inlet temperature T (t) :
P

A c
( ) \V Vv pdL2L + + fn'c Tf + rh' e T = + - (2.1)

qu qv f Pv P Pv P dt J dt

The consideration of nucleate boiling in the boundary layer is restricted to the hydrody-

namic effect of increasing the boundary layer heat transfer coefficient and mass flow.

The effect of vapor bubbles that do not condense before reaching the liquid surface,

thereby directly affecting the rate of pressurization, is not considered. Using the boil-

ing boundary layer analysis of Ref. 2, and assuming a uniform vapor distribution, yields

the following expression for the rate of growth of the stratified layer:

8xh b

Rp c
L PL

+ 1

(2.2)

Transition from a boiling to a nonboiling boundary-layer mass flow rate is accom-

modated by assuming a linear variation between specified values of wall superheat

which represent the nonboiling and fully developed boiling criteria.

2.1.2 New Liquid-Ullage Coupling Model

The new liquid-ullage coupling model and the nomenclature used in the analysis are

presented in Fig. 2-1. The analysis is based on the following assumptions:

• The convection current in the ullage is strong enough so that the bulk of the

ullage is at a uniform temperature and species concentration.

• Temperature and concentration gradients in the ullage exist only across a

film of negligible mass adjacent to the liquid-ullage interface.

2-2
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Fig. 2-1 System Model Used in Liquid-Ullage Coupling Analysis
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• The vapor and pressurant are characterized by a modified perfect gas law.

• The specific heats of the ullage vapor and pressurant are constant with respect

to temperature.

• The partial pressure of the vapor at the interface is the saturation pressure

corresponding to the liquid-vapor interface temperature.

• The properties of the liquid (except the density in considering bouyant flow)

are constant.

• The interface area is constant.

Additional features not considered in the original analysis include:

• Arbitrary pressurization with a noncondensible gas

• A more complete consideration of the effects of bottom heating

• Transition from laminar to turbulent free-convection boundary layer

• Tank volume change due to tank strain

• Cylindrical tank with arbitrary end geometry

It is assumed that the tank can be represented by an "equivalent cylinder" such that the

interface area and the change in liquid and ullage volumes with interface position are

constant. The distance below the liquid surface at which the free convection boundary

layer begins is defined as H. The distance L is defined so that the ullage heated wall

area is 2_RL. H' and L' define the liquid and ullage volumes:

Yr'

i

i

= = _R2L '
V L _R2H ' and V u

The bottom heat flux is adjusted so that the correct total bottom heat rate is expressed

by 7rR2qB .

2-4
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where

fv (p) = (ah*_
\Sp]T

O

(2.4)

and

P

Fv(P) = ffv (p) dp
Po

(2.5)

These expressions are derived in Ref. 3, where the energy datum is taken as the spe-

cific enthalpy of the liquid at an arbitrary saturated-liquid reference state defined by

and PoT O

Equation (2.3) includes the following assumptions:

and rh enter at the system total pressure,• The entering gas streams, rh v p,

• The vapor entering due to vaporization of the liquid, _nf, enters the system

at the vapor pressure, pf, corresponding to the interface temperature, Tf.

• The vented mass, fi_u' leaves at the same vapor concentration, w, as the

mixed ullage.

Pt

An energy balance on the entire liquid system yields

+ qBAB qL A rnf cpL[_w_w - _- (_- _o)]_t

c - zl_ (_,__o)(_v_z)_+e _,_ ,_ [_(_ _o)V.]

(_oV_/¢_pt (2.6)

LOCKHEED
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Assuming that allbottom heating energy remains in the bulk liquid,an energy balance

on the bulk liquidgives

qB ABdt = c d I@B (TB - TolVB]- (_ToVB/J)dPt
PL

(2.7)

To determine surface temperature, an additional energy balance is required. Since

it is assumed that the surface temperature is unaffected by bottom heating, an energy

balance may be made on the liquid system assuming no bottom heating. This gives

qLAs  o)]dt

c d  L(TLTo)(dV/dz) ovL/¢dPtPL
(2.8)

where A' is the stratified layer depth with no bottom heating. Reference 1 gives

expressions for A, for laminar and turbulent free convection boundary layers, and

Eq. (2.2) provides an alternate expression to be used when boiling exists in the boundary

layer. Transition from a nonboiling to a boiling boundary layer is accomplished as

described in Section 2.1.1.

An energy balance on the liquid-vapor interface yields

(qL - qv ) As = rhf X (2.9)

Liquid and vapor interfacial heat transfer coefficients are defined such that

qL = hL (Ts - Tf) _bL (2.10)

2-7
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where

hL = kL/6 L (2.11)

and

c fnf/h L A
PL s

_L = /

- exp _- cpL lhf/h L A s
1

(2.12)

qv = h - Sv (2.13)v (Tu Tf)

where

hv = kv/6 v (2.14)

c fnf/hv A
Pv s

_v = (s) (2.15)1 - exp c fnf/h vA
Pv

Equations (2.12) and 2.15) result from integration of the rate equations for the liquid

and vapor films, using a quasi steady-state approximation and the assumption that the

films have negligible mass and thermal capacity. This approach is the same as that

used in the earlier analysis of Ref. 2; details of the method are presented in Refs. 3

and 4.

A mass balance on each of the species in the ullage yields

dm

v _ rh + fi_f - w_n (2.16)dt v u

2-8
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and

dm

___2 = _n - (1 - w)fn
dt p u

(2.17)

A mass balance on the liquid gives, approximately (Ref, 3),

S T

d / dH'fi_f = AsflPo _ (TL - To) dZ - PoAs at
0

(2.18)

Following the approach used to obtain the closed-form, integral technique stratification

solutions of Refs. 1 and 2, an energy integral is specified for the stratified layer as

(2.19)

The state equations for each of the species in the ullage are

= m Zv_ T J (2.20)Pv Vu v v u

= m Zp_[_ T J (2.21)Pp Vu p p u

Dalton's Law for mixtures of nonreacting gases relates the species partial pressures

to the system total pressure:

dPv + dpp _ dPt (2.22)
dt dt dt

2-9
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Also, the Clapeyron relation is used to relate Tf and pf:

In

o

(2.23)

When a noncondensible pressurant is used, StefanTs diffusion law is integrated across

the vapor film from z = 0 to z = - 6 assumingv

u : 1 +

T u - Tf

(2.24)

to yield

*hf = J_Ir Z 6 (nT +v v u Tf) \,t ,,/
(2.25)

Finally, if the tank is allowed to expand with increased gage pressure,

I
+ V L = V t ]l+e

Vu o
|

(2.26)

The above system of equations can be solved to give the ullage pressure and temperature,

the interracial mass transfer, the liquid surface and bulk temperatures, and the liquid

level as functions of time. A FORTRAN computer program has been written which

solves this system of equations integrating the differential equations by a forward finite-

difference technique.

2-10
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2.2 EXPERIMENTS

The liquid-ullage coupling models which have been developed contain three param-

eters which must be experimentally determined: h, h L , and I. An experimental

program was conducted to establish the validity of the ullage coupling model and to

develop empirical, dimensionless correlations for the three required parameters.

The approach used was to establish values for h, h L, and I which most accurately

predicted the experimental pressure, ullage temperature, and interfacial mass trans-

fer for each run. This work is an extension of that begun during Phase II of the

study, in which only limited liquid-ullage coupling data were obtained.

2.2.1 Facility and Experimental Procedures

The pressure vessel facility described in Ref. 2 was modified so that it could be used

for the liquid-ullage coupling experiments. A schematic of the apparatus and asso-

ciated plumbing is shown in Fig. 2-2. The modified tank design includes an inner

chamber which holds the test fluid and which is at the saturation pressure correspond-

ing to the liquid-vapor interface temperature. The outer chamber formed by the

pressure vessel can be evacuated to control the pressure differential across the inner

chamber wall to assure that any leakage will be out of, rather than into, the inner

system. The inner .test chamber is a cavity which was formed in the pressure vessel

by pouring polyurethane foam over a hemispherical mold at the top and providing an

epoxy floor near the bottom. The upper and lower portions of the stainless steel shim

stock on the wall were clad with 0. 020 in. copper sheet so that only the wetted surface

is resistance heated. The polyurethane foam is protected from the vapor by a 10-mil-

thick coating of polyvinylchloride.

The ullage heater consists of a hemispherical frame on which 70 feet of 45-mil

nichrome V wire is wound. To reduce radiative heat transfer to a minimum, the

hemispherical heater was covered on both sides with a mylar film which was alumi-

nized on the outer surface. A copper-constantan thermocouple was mounted on the

ullage heating element to monitor the ullage heater temperature.

2-11
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Fig. 2-2 Schematic of Liquid-Ullage Coupling Experimental Apparatus
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A removable glass drying tube filled with indicating desiccant was placed in the sys-

tem such that controlled venting could take place through the moisture-absorbing

medium. The total amount of vented vapor was determined by accurately weighing

the drying tube before and after use.

A thermocouple probe with 18 copper-constantan thermocouples was installed along

the centerline of the inner chamber. The probe was constructed from a 5/8-in. o.d.

epoxy-glass tube, and the thermocouples were made from 24-gage wire. Also, six

thermocouples were mounted on the ullage wall and four were mounted on the shim

stock liquid heater. All of the wall thermocouples were made from 36-gage wire.

The inner chamber pressure was monitored and recorded using a strain gage pressure

transducer mounted below the sight glass.

For each test, the required initial condition was to have the inner tank filled with a

saturated liquid in thermal equilibrium with its vapor and the tank. Before testing,

all air had to be removed from the system by filling the tank with liquid and boiling it

at a low pressure for about 30 minutes. The vacuum pump operated on the ullage dur-

ing this time and for the 12 hours required to reach thermal equilibrium. When steady

state was obtained, the inner chamber was isolated and the test begun.

The liquid and ullage heat rates were the independent boundary conditions for each run.

The heat rate to the liquid was obtained as a function of the liquid heater amperage

using data from subcooled calibration runs. There were two methods available for the

determination of the ullage heat rate. One was to calculate the total energy input by

integrating the energy in the liquid and ullage, and then to subtract the calibrated

liquid wall heat rate. To facilitate this calculation, as well as to provide values for

the heat and mass transfer rates between the liquid and the ullage, an energy balance

was written and programmed for computer solution. This program is described in

Ref. 5. For most of the test conditions, accurate values for the ullage heat rate

could not be obtained using this method because the ullage heat rate was an order of

magnitude smaller than the liquid heat rate. However, the alternative method for
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determining the ullage heat rates was quite successful. The conduction losses through

the ullage wall were calculated using the measured ullage wall temperature distribution

as a boundary condition. These losses and the heat stored in the heating element were

subtracted from the total measured power input to the ullage heater to determine the

net ullage heat rate.

L

2.2.2 Experimental Results

The experimental test conditions are summarized in Table 2-1. The average liquid

temperature shown is a space-time average and is used to evaluate the modified

Grashof and Prandtl numbers for the liquid. The liquid heat rates were obtained from

the subcooled calibration runs made with both water and Freon 11. Using the defini-

tion of transition from laminar to turbulent boundary-layer flow as given in Ref. 2

* = 01(RaTR 1 1), the predominant flow regimes in the liquid can be identified. The

liquid modified Rayleigh numbers given in Table 2-1 indicate that in all of the water

runs, the boundary layer was laminar for more than half the run length. The Freon 11

runs were all predominantly turbulent.

The interfacial heat transfer coefficient on the vapor side is actually a forced convec-

tion coefficient, since the flow past the interface was induced by the free convection

flow on the walls and ullage heater. For this reason, an average vapor-heater film

temperature (defined in Ref. 3) was used to evaluate vapor properties for the calcu-

lation of ullage Grashof and Prandtl numbers. Also for this reason, the following

forms for ullage Grashof number were selected as the most appropriate for correla-

tion of experimental results:

GrR = g flv (Tuhtr - Tu) R3/v2 (2.27)

* 2 (2.28)GrR = gfivquR4/kv Vv
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57
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68F
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69F

70F

62V

64V

(a)

(b)

AVERAGE VAPOR

FILM TEMP.

(°F)

76.9

81.1
86.6

92.3

91.1
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91.4
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0
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0
0
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5.85
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1.02 x I0 I0
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Based on absolute value of ullage heat flux
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0
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0
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8.65
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PRANDTL NO.

Prv
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1.08
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1.08
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PRESSURE

RISE

(psi)

ULLAGE

MASS CHANGE

(Ib)

0.156

0.304

O.485

0.0238

WATER RUNS

6.8 x 10 -5

13.9
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1.0
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TEMPERATURE RISE

(@F)
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400 0.
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1000 0.
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300 0.
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The modified Grashof numbers (Eq. 2.28) are based on the calculated net value of the

ullage heat flux, thus values are shown in Table 2-1 for the runs where the ullage

heater was not used. However, the conventional Grashof numbers (Eq. 2.27) for these

runs are shown as zero since the ullage heater temperatures were equal to the vapor

temperatures in these cases.

Experimental results were examined to determine the existence and the character-

istics of boiling which may have occurred during the high-heat-flux runs. Recorded

thermocouple data for Runs 41, 42, and 43 showed that oscillations indicative of boil-

ing occurred at all wall thermocouple locations except the lowest one. These obser-

vations imply that boiling started somewhere between 4.25 and 6.5 inches from the

tank bottom and persisted along the wall to the liquid surface. Wall superheat for

these runs reached a maximum about half way up the wall. Near the liquid surface,

the measured superheat was smallest and apparently out of the boiling regime. It is

probable that boiling which occurred half way up the wall caused an increase in the

boundary-layer velocity and heat transfer coefficient further up the wall, thus reducing

the wall temperature. Since boiling may persist at lower values of superheat once it

has been established (Ref. 6), the observed superheat is not inconsistent with the

presence of boiling near the top of the tank, as implied by the wall temperature

oscillations.

F

ii:
i!

J}:

b

i

Run 59 had the same liquid heat flux as the other boiling water runs, but did not exhibit

any boiling characteristics. The wall superheat in this case varied uniformly with

vertical distance, as expected for free convection flow with no boiling. Also, there

were no wall temperature oscillations during this run. It is concluded that in this

case, the increased ullage heat flux and corresponding pressure rise provided sufficient

subcooling to prevent boiling.

Three boiling runs (69F, 70F and 71F) were made with Freon 11. The liquid heat rate

used for these runs was relatively high and there is no doubt that fully developed nucle-

ate boiling existed in all cases regardless of ullage heat rates.

LOCKHEED
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2.3 COMPARISON OF EXPERIMENTAL RESULTS WITH ANALYSIS

The data from the liquid-ullage coupling experiments with water and Freon 11 have

been compared with predictions from the original liquid-ullage coupling model, as

modified to consider boiling conditions (Refer to Section 2.1.1). Values of the liquid-

vapor interface heat-transfer coefficients and the liquid energy integral used in the

model were varied to determine those values which resulted inthe most consistent

agreement with the data.

The effect of the energy integral on the pressure rise prediction is shown in Fig. 2-3

for Freon 11 and water. The discontinuity in the prediction curves for Run 52 occurs

when the stratified layer reaches the tank bottom. This happened at a relatively early

time in all of the water runs and in the high-heat-flux Freon 11 runs. The stratified

layer reached the tank bottom in about 700 seconds for the low-heat-flux Freon 11

runs (Runs 65F-68F). The value of the energy integral affects the slope of the pres-

sure rise prediction only for times before the stratified layer reaches the tank bottom.

Therefore, the energy integral was used to match the slope of the data for the low-

heat-flux Freon 11 runs, whereas such a variation had little effect on the slope of

predictions for any of the other runs. For the low-heat-flux Freon 11 runs, both the

energy integral and h L were obtained by matching the pressure rise data. However,

for these runs, the ullage temperature rise did not provide a solid basis for the selec-

tion of h. Only the prediction of the mass transfer was used to determine the best

value for h. The reason for this approach is illustrated in Fig. 2-4. All of the

predictions shown are of a reasonable order of magnitude but none has a slope which

agrees with the data.

For the water runs, a value of the energy integral was arbitrarily chosen and the

corresponding value for h L determined by matching the pressure rise data (the pres-

sure rise prediction has a negligible dependence on h). The value of h was then

varied until both the mass transfer and the gas temperature rise data were closely

approximated by the predictions. Where this could not be done, the value for the

energy integral was changed and the process repeated.
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Although the slope of the pressure rise data could be matched in the low-heat-flux

Freon 11 runs by selecting an appropriate value of I, the magnitude of the data

could not always be matched with the same value of I. This problem is illustrated in

Fig. 2-5, where the curves for an I of 0.3 have the correct slope after steady-state

stratification is established. For small values of h L, the prediction is furthest

away from the data (curve 1) and the "transient time" is quite large (curve 1 has not

yet reached its steady-state slope, which is the same as that for curve 2). As h L

is increased with the same value of I, the prediction agrees more closely with the

data. However, curve 2 represents the limiting prediction for an infinite liquid heat

transfer coefficient. The interface temperature is very close to the "surface" tem-

perature established by the stratification model. In other words, liquid stratification

appears to control the pressure rise under these circumstances. The only way to ob-

tain closer agreement with the data is to change the value of I, thus producing

curves 3 and 4. To obtain a prediction which matches the data well and has a slope

nearest that of the data, the curve corresponding to an essentially infinite value of

h L was used.

f,
i
i

[
{

The relative effects of the interfacial heat transfer coefficients on the mass transfer

and ullage gas temperature rise are shown for Run 52 in Figs. 2-6 and 2-7. As with

the pressure prediction, the slopes of the predictions agree well with those of the data

at later times. Figure 2-6 shows that the predicted mass transfer is more sensitive to

changes in h L than h. This figure also shows that mass transfer increases with

increasing h whereas it decreases with increasing h L . These results are consistent

since, in the predictions for Run 52, energy is transferred away from the interface

into the liquid and toward the interface from the vapor.

The concave-upward shape of the ullage gas-temperature-rise data for the Freon 11

runs (See Fig. 2-4) may be attributed to the nature of the ullage temperature profiles.

The nonuniform ullage temperature profiles shown in Fig. 2-8(a) are characteristic

of all the Freon 11 data and do not agree with the uniform profiles assumed in the

analytical model. However, the characteristic water data shown in Fig. 2-8(b) do
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exhibit uniform ullage temperature profiles. The ability of the model to predict the

ullage vapor temperature rise seems to be related to how well the measured tempera-

ture profiles correspond to those assumed for the model.

During the initial phase of Run 67F (Fig. 2-8a), the gas temperature was less than the

interface temperature, implying that heat was transferred from the interface to the

ullage gas during this time. At later times, the interface profiles were reversed, and

heat was apparently transferred to the interface from the ullage gas. The profiles

appear as if the interface temperature was increased initially by stratification, with

the ullage heating effect subsequently becoming dominant. It is difficult to explain this

ullage temperature history if it is assumed that the ullage heat rate was constant

(based on the constant heater power). The temperature rose faster at later times

when the heat transfer from the ullage to the interface was probably relatively large.

A variable value of h could give this result, but it does not seem reasonable thatv

h would be smallest when the largest temperature differences existed in the ullage
v

gas. Furthermore, the data as shown indicate that net energy was transferred away

from the interface early during the run. This would result in condensation during this

time whereas the mass transfer data (obtained from a mass balance on the ullage) in-

dicate that net evaporation occurred. One explanation for this anomaly is that the

temperature profile near the interface may have varied in the radial direction.

Evaporation near the wall could have cooled the liquid as it flowed past the interface

toward the center of the tank. Some vapor could have condensed on the interface

near the center, but with the net mass transfer from the liquid to the vapor phase.

The liquid-ullage coupling model does not consider a temperature profile variation

radially across the interface; however, the net results may still be valid. The correct

net mass transfer and pressure rise are obtained using an appropriate average value

for the interfacial heat transfer coefficients. However, the ullage gas temperature

must be relatively uniform before the model will give a predicted ullage temperature

rise which agrees well with data measured on the tank axis.

Figure 2-9 shows the predictions for a venting run which agree quite well with the

data. The discontinuity which occurs in the prediction when venting is initiated was
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not observed experimentally and is a function of the value used for h L . For very

large values of h L, the discontinuity becomes very small, approaching the observed

results.

A survey of the available hydrogen liquid-ullage coupling data was made to determine

if any of the data were suitable for comparison with the model. To compare the hy-

drogen data with predictions from the model, data must be available for ullage pres-

sure rise, temperature rise, and interface mass transfer. In addition, all of the

boundary conditions must be known. During all of the tests conducted by Lockheed

Georgia Co. (Refs. 7 and 8) the fill line was vented to the ullage; thus it is impossible

to calculate the interface mass transfer from a mass balance on the ullage. The data

obtained by the Martin Co. (Ref. 9) cannot be used because there were no self-

pressurized runs during which ullage temperature measurements were made. A

reasonable comparison can be made with some of the data obtained from the full-scale

S-IV tank tests at MSFC. The data from test 2B satisfy all of the requirements and

can be compared with predictions. An approximate value for the ullage heat rate for

run 2B was obtained by assuming that the heat rate was proportional to the temperature

difference between the liquid or vapor and the outside tank wall. Since the liquid heat

rate was obtained independently by an energy balance, the ullage heat rate can be de-

termined. Data for the pressure and ullage temperature were obtained directly, but

the interface mass transfer must be calculated from a mass balance on the ullage gas.

Since a range of values was measured for both the ullage pressure and temperature,

a range of values results for the ullage mass as a function of time. Figure 2-10 com-

pares the data with predictions for various values of h and h L for an energy integral

of 0.25. Figure 2-11 shows the effect of a variation in I, holding h and h L

constant.

c:

No single combination of parameters will predict pressure, mass transfer, and ullage

temperature exactly for this run. In this case, it is necessary to find a compromise

which gives the closest approximation of the desired predictions. For example, Fig.

2-10(c) shows that the ullage gas temperature is under-predicted at later times with
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h = 10 -3 and I = 0.25. This prediction could be brought closer to the data by
v

increasing I or decreasing h as illustrated in Fig. 2-11(c) (h L has little effect in

this case}. However, either one of these changes has the effect of moving the mass

transfer prediction further away from the data (Figs. 2-10b and 2-11b). A decrease

in h L could be used to counteract the change in the mass transfer prediction, but such

a decrease would make it impossible to obtain a reasonable prediction of the pressure

rise. (Fig. 2-10a).

2.4 CORRELATION OF RESULTS

Predictions were compared with data from all of the runs, and the values for h, h L

and I which produced the best prediction of the data were chosen for each case. These

values are given in dimensional and dimensionless forms in Table 2-2. Before corre-

lations could be developed, the significant independent variables were identified and

expressed in appropriate dimensionless form. These variables are qu' qL' liquid

properties, vapor properties, geometry, local acceleration, and the latent heat of

vaporization. The geometry was not varied sufficiently in these tests to isolate this

effect; therefore geometry parameters such as H/R and L/R cannot be considered

for the correlation. This is not believed to be a serious limitation since, for most

propellant tanks, any difference in tank geometry probably has a second-order effect

on the parameters of interest. This was demonstrated in the case of subcooled

stratification when no detectable effect of H/R on the energy integral was found

(Ref. 2).

The dimensionless parameters which account for the effects on heat transfer of liquid

and vapor properties as well as local acceleration and absolute tank size are the

Grashof and Prandtl numbers. Since the vapor Nusselt number did not show any con-
.

sistent dependence on Gr R (Ref. 10), the modified vapor Grashof number Gr R was

chosen as the appropriate correlating parameter for Nu v .

Figure 2-12 is a plot of the liquid Nusselt number as a function of liquid modified

Grashof number. Although there is considerable data scatter, the inclusion of the
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Table 2-2

LIQUID-ULLAGE COUPLING DATA CORRELATION RESULTS
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Prandtl number as a correlating parameter provides no improvement. This is also

true in the case of the vapor Nusselt number correlation (Fig. 2-13). Many attempts

were made to reduce the data scatter shown in Figs. 2-12 and 2-13 by the inclusion

of other parameter groups, both dimensional and dimensionless, as independent

variables. None of these attempts succeeded in reducing the scatter a significant

amount, so the simple dependence on only Grashof number has been retained. It is

encouraging to note that both the liquid and vapor Nusselt number values obtained

from the hydrogen data appear to be consistent with the Freon 11 and water daLa.

The final correlations obtained can be expressed as:

Nu L = 3.24 x 10 -4 (GrH)0"433 (2.29)

* )0. 067Nu V = 246 (Gr R (2.30)

The values of I which were required to match the ullage data with the liquid-ullage

coupling model predictions are compared in Fig. 2-14 with the experimental corre-

lation obtained with subcooled-fluid stratification data. The ullage data for water and

Freon 11 do not agree particularly well with the subcooled data but seem to follow a

similar trend. The one value used to obtain a correlation for the hydrogen run is

smaller than the value found to correlate the liquid temperature profiles with bottom

heating. If there is a mass transfer effect on the energy integral, it should correlate

with some dimensionless form of _. Several dimensionless ")_ groups" which appear

in the differential equations describing the liquid-ullage coupling model were considered.

These groups contain only fluid properties which are insensitive to temperature varia-

tions; thus, for any fluid, there is one value for each k group. The use of these

groups can only shift the set of data for one fluid relative to another fluid. They cannot

be used to bring the data points of a particular fluid closer together. The best corre-

lation obtained is shown in Fig. 2-15. The resulting relationship is given by
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,)0.1
X v)= 0.065 Gr H (2.31)ITo (CpL - Cp

The nature of the data scatter for each fluid and the existence of only one point at a

very high value of Gr_, makes it necessary to qualify this correlation. It is recom-

mended that Eq. (2.31) be treated as a preliminary result which requires further con-

firmation as more data become available, preferably from fluids which cover a wide

range of properties.
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Section 3

LOW-GRAVITY INTERFACE STABILITY

An important objective of Phase III of this study was to perform drop-tower experiments

to confirm the criteria derived to define the boundary-layer breakthrough problem.

The general approach has been to examine analytically the criteria for interface

stability and for simulating the boundary layer flow in a large cryogenic tank, and

then to design and conduct calibration and drop-tower tests to cover the range of

appropriate conditions. A review of the analysis methods and a complete description

of the experimental program are presented in this section.

3.1 ANALYSIS

An accurate analytical description of the breakthrough problem is very complex. In

principle, the velocity distribution actually existing in the free surface should come

from a simultaneous solution of the time-dependent continuity, energy, and momentum

equations subject to zero-velocity boundary conditions at solid walls, a zero-shear

condition at the free surface, and satisfaction of the contact angle at the wall. At

present, however, this rigorous approach is difficult without many simplifications

and approximations. An analytical method developed in Phase I of this study to pre-

dict free surface shape has been extended to determine the maximum surface Weber

numbers which will yield a stable interface. A brief description of this modification

is included in this section and a complete description of the computer program is

presented in the Appendix. The application of the analytical model for obtaining the

appropriate drop-tower test conditions is also described.

3.1.1 Analysis for Limiting Weber Number

The differential equation and boundary condition for the free surface of a liquid in a

cylindrical container have been presented in Ref. 1. The equation is
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1 d
r dr

We U 2 0 (3.1)
2 Frr(0) - BoF 2 =

with boundary conditions

F (0) = 0 (3.2)r

F (1) = cot 0 (3.3)
r

where F and r are the liquid height (above datum at r = 0 ) and the radial distance,

respectively, normalized by tank radius ; U is the local surface velocity normalized

by the velocity used in the Weber number; and _ is the liquid-wall contact angle.

Equation (3.1) has been solved by a method of successive approximations involving

integral equations and by numerical integration with iteration of initial values of Frr ( 0 ).

For a given Bond number and velocity distribution, there exists a limiting Weber num-

ber above which numerical solutions cannot be obtained within the mathematical model

used. The computer program based on the Runge-Kutta method has been modified to

include an iteration scheme to calculate the limiting Weber number.

Observation of the numerical values of F (0) as the iteration progressed indicated
rr

that only a very small change of Frr (0) values was necessary to go from no solu-

tion to a solution. Therefore, the following criterion for defining the limiting Weber

number was selected. Let

Frr(0) n - Frr(0)n+ 1

Frr ( 0 )n+l
(3.4)

-8
where n and n+ 1 are numbers of iterations. If _ > 2 x 10 (the computer accuracy

limit for single-precision calculations), the iteration with respect to Frr (0) con-

tinues with the input Weber number.
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If _ - 2 x 10 -8 , the Weber number input is greater than the limiting value. For

the latter case, a new iteration begins using a lower value of We. This process is

repeated until either a prescribed lower-bound value of We is reached or a solution

is obtained. The limiting We is considered reached when a solution is obtained for

a Weber number which is within five percent of an unstable value. Details of the

computer program are presented in the Appendix.

A number of computer runs were made to define the limiting Weber number for the

"double-sine" velocity distribution suggested in Ref. 1:

V

sin _ , r -< r m

sin _ , r > r m

(3.5)

where r is the radial location of the characteristic (maximum) surface velocity.m

The results are presented in Fig. 3-1, in which the effects of varying r and 0m

are shown. Changing the integration step size, Ar, is seen to have only a minor

effect on the results. Other surface velocity distributions, obtained experimentally,

have also been used to calculate limiting Weber numbers. These results are dis-

cussed in Subsection 3.2.3.

For Bond numbers greater than 200, consistent values of the limiting Weber numbers

could not be obtained with either single or double precision calculations. For large

Bond numbers and finite Weber numbers, however, the surface tension forces become

small compared with the gravitational and inertial forces, and the Froude number

becomes the controlling parameter. Therefore, this upper bound of applicability of

the model is not considered to be a significant limitation.
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Fig. 3-1 Limiting Weber Number for Double-Sine Velocity Distribution

3.1.2 Analysis of Experimental Velocity Requirements

For small Bond numbers, the integral method of solution of Eq. (3.1) may be used to

calculate the limiting Weber number, as described in Ref. 11. A rectangular surface

velocity distribution is used to approximate the boundary layer flow:

(3.6)

For this simple case, a closed-form expression for the limiting Weber number is

obtained for Bo = 0 and 5BL << R:
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We 5 ,L = 2(1 + cos 0) (3.7)

where Wes, L is based on the boundary layer thickness, 5BL, and the maximum
N

boundary layer velocity. For fluids with small contact angles, Wes, L = 4, where

a wall boundary layer is the source of flow. This result was considered to be a

general guide to the limiting Weber numbers to be expected.

3.2 EXPERIMENTS

To investigate the validity of the boundary-layer breakthrough criterion obtained from

the analysis of Ref. 1, experiments were designed to satisfy the following objectives:

• To obtain experimentally the free-surface radial velocity distribution caused

by a convective flow upward along the tank wall

• To investigate the effect on the liquid-gas interface stability in a cylindrical

tank of liquid circulation such as that caused by a natural-convection boundary

layer

• To determine the Bond number - Weber number combination (i. e., Froude

number) to assure an acceptable free-surface rise for the expected full-

scale liquid behavior

• To establish the effectiveness of baffles in limiting the boundary-layer "jump"

for unstable surface conditions

The experimental program was conducted in two phases. The first consisted of

standard gravity tests in which the flow apparatus was calibrated and the liquid sur-

face velocities were measured. The second phase was performed under reduced

gravity conditions in the LMSC drop-tower facility at the Santa Cruz Test Base.

3.2.1 Design of Experimental Apparatus

Consider a small-scale experiment of 10 cm radius and 30 cm height to be performed

in a drop-tower. If Freon 113 is used as the test fluid (because of its low surface
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tension) and a wall temperature difference of 50°F is maintained, a turbulent free-

convection boundary layer is obtained whose thickness of 0.5 cm and maximum velocity

of 22 cm/sec result in a We 5 value of 18. This condition is sufficient to cause an

unstable liquid surface, according to Eq. (3.7). Although the liquid could be heated

by using a transparent outer tank filled with warmer liquid, an alternative technique

was used which has greater flexibility in that greater Weber numbers could be achieved°

This technique was to simulate, insofar as possible, the free-convection boundary-laye_ _

velocity and thickness at the free surface with a wall jet whose mass flow could be

varied. To size the flow geometry for this experiment, the analysis (Ref. 12) of a

plane, semicontained, submerged jet was used. To obtain the desired jet width

(0.5 cm) at the surface and for the jet velocity profile to develop into one similar to

that of a free-convection boundary layer, the required jet exit was calculated to be

0.2 cm in width, located 2.67 cm beneath the free surface.

The actual dimensions used are shown in Fig. 3-2, which is a schematic of the test

tank. Flow from the pump enters the plenum, passes through a filter material to

assure flow equalization, and continues into the annular jet fence. Liquid is returned

to the pump through a flow-straightener in the tank bottom. A pump capable of a

flow rate of 8 gpm was installed and provides We and We 5 values of 2280 and 117,

respectively, where We 5 is based on a calculated jet width of 0.54 cm at the liquid

surface, and u is 1.5 times the average flow velocity at the annular jet exit, basedm

on fully-developed laminar flow. The jet flow rate (velocity) was adjusted by a gate

valve in the flow loop. Five flow rates were selected to investigate the limiting value for

interface stability as determined from the analysis of Section 3.1.2. The test con-

ditions selected and the corresponding dimensionless parameters are presented in

Table 3-1 for the standard gravity calibration runs and the reduced-gravity drop-tower

tests. Although water was used as the test fluid in the calibration tests, the Bond

and Weber numbers are based on Freon 113 fluid properties in order to be comparable

with the flow conditions obtained in the drop-tower tests. The Froude number is the

ratio of the Weber to Bond number, and contains no fluid properties.
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3-7

LOCKHEED MISSILES & SPACE COMPANY



Table 3-1

SUMMARY OF INTERFACE STABILITY TEST CONDITIONS
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3.2.2 Standard Gravity Flow Calibration Test

As a means for understanding the high-gravity free-surface flow that provides the

initial condition for the low-gravity liquid response at engine cut-off, a series of flow

calibration tests were performed before conducting the drop-tower tests. This test

series had two objectives:

• To examine the overall operational characteristics of the equipment to ensure

that the desired performance during the drop tests would be provided. In

particular, a correlation of the jet velocity with the gate valve setting and

flow meter reading was to be established for later use in the drop-tower

tests.

• To examine quantitatively the behavior of the jet flow as it approaches the

surface under the high-gravity condition.

The above information was obtained with the aid of a hydrogen bubble flow visualiza-

tion technique (Ref. 13). The test liquid was distilled water with a small amount of

magnesium sulfate added to promote electrolysis and hydrogen gas generation. High-

speed motion pictures were taken of the tank under steady-state conditions. The data

reduction technique involved tracking selected bubbles, bubble groups, or particles

on a frame-to-frame basis using a motion picture film reader.

Figure 3-3 is a diagram of the flow visualization arrangement employed during the

flow calibration at standard gravity. The light source was a 35 mm slide projector

with a 500 w bulb. Because of the high frame rates and correspondingly short exposure

time, more concern was given to light intensity than is usually required with this flow

visualization technique. By passing the light beam through two slits, a collimated

beam of light, approximately 1 inch high and 1/4 inch thick, was introduced through

the tank wall along the diameter. The camera direction of view was normal to the

light beam, which is not the optimum angle for viewing sidelighted bubbles. However,

this arrangement was necessary in order to limit the flow measurement to the radial

direction.
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Lucite Wall
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Fig. 3-3 Flow Visualization Apparatus- Top View
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Because of the low light level and high frame rates employed, it was necessary to

use Tri-X film and overdevelopment to obtain high contrast and a picture from which

data could be extracted. Unfortunately, this promoted a grainy structure which

reduced the detail that could be seen.

The flow meter output was displayed on an oscilloscope. The scope signal together

with the flow meter calibration curve provided the indication of the desired flow rate

condition. The pulsed dc voltage to the hydrogen bubble wire was supplied by a

Hewlett-Packard square wave generator. This gave excellent on-off characteristics

for generating uniform bubble sheets. In all cases except the lowest flow rate runs,

the bubble sheets from the probe wires did not retain sufficient integrity to be used

as tracking targets. However, the flow was sufficiently populated with small bubbles

and particles to allow a flow trajectory to be traced.

A particle displacement from one frame to the next, plus the known framing rate

(200 frames per second) yielded local fluid velocities. The displacement values taken

were in the radial direction. Care was exercised to select only those particles or

bubbles following essentially a radial line. It was intended to obtain velocity informa-

tion close to the surface; in some instances, however, no particles could be seen in

the immediate subsurface region and a particle more deeply submerged was used.

No particles more than 0.5 cm below the surface were considered and the great

majority were approximately 0.25 cm beneath the surface. A considerable degree of

turbulence and vortex activity was present, except during the low flow-rate runs.

The experimental radial velocity distributions are presented in Fig. 3-4. Each data

point symbol represents a different tracked particle. It is apparent that considerable

scatter in the velocity values is present. Some of this is attributable to the turbulent

and nonradial components of the flow. However, much of it is due to the inherent

inaccuracy in obtaining the velocity of an object by taking small displacement incre-

ments over small time increments. Nevertheless, a trend in the velocity distribution

is apparent as indicated by the curve drawn through the data points.
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As a check on the calculated jet velocity, velocity measurements were taken of the

flow issuing from the jet. These data, obtained at the center of the jet, are labeled

on the figures as "measured jetvelocity." Itis noted thatthese measured values

exceed the calculated average velocity in each case, and are less than the calculated

maximum values based on a fullydeveloped laminar velocity profile at the jet exit.

Figures 3-5(a) and (b) are sketches of the flow configurations observed during the

calibration testing. The low flow condition was less agitated and revealed more

details of the flow patterns. Little free surface distortion was present. As the flow

approaches the free surface it apparently encounters an adverse pressure gradient

associated with the stagnation at the surface and the turning of the flow. In this

pressure gradient, a separated region is formed with back flow along the wall and

beneath the surface in the form of a stationary vortex.

For the high flow condition, with a Froude number based on average jet velocity of

0.13, the free surface was considerably distorted. A much smaller, almost imper-

ceptible, stagnation region at the junction of the free surface and tank was was observed.

Of the curves in Fig. 3-4, only that for the highest velocity would extrapolate to

intersect the tank centerline at zero velocity. It was observed that the flow at the

tank center formed a vortex about the tank central axis. Thus the radial flow became

a circumferential flow near the center. The radial velocity was assumed to drop to

zero over a short distance from the tank centerline.

To demonstrate any similarity among the radial velocity distributions, each of the

curves drawn through the data was normalized on the maximum calculated jet velocity

and replotted as a function of the normalized radius r. These distributions are

shown in Fig. 3-6; a definite degree of similarity is apparent. The choice of the

maximum jet velocity as the normalizing parameter is somewhat arbitrary; however,

it is the only velocity which is consistently greater than any of the measured subsur-

face velocities.
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Also shown in Fig. 3-6 are several curves intended to approximate, in various

degrees, the experimental data. One of these curves incorporates a stagnation point

near the wall, which is intended to approximate the separated region observed in the

calibration tests. These various curves are discussed further in Section 3.2.3.

3.2.3 Reduced-Gravity Drop-Tower Tests

Following the flow calibration tests at standard gravity conditions, the test apparatus

was installed in the LMSC drop tower for testing under reduced-gravity conditions.

Because of its poor wetting characteristics with the Lucite tank wall, water was not

used for the low gravity drop tests and preference was given to a liquid with wetting

characteristics simulating those of a cryogen. Accordingly' Freon 113 (Freon

TF) was employed as the test liquid for the drop tests (conditions 6 through 14).

Although an alcohol such as isopropyl alcohol would have provided a larger maximum

Weber number capability, the Freon was preferred because it is nonflammable. The

properties of Freon 113 pertinent to this test are listed below. *

Surface tension: 23.0 dyne/cm (at 25°C)

Density: 1.57 g/cm 3 (at 25°C)

The flow conditions listed in Table 3-1 were established prior to, and maintained

throughout, the entire test period of approximately one second. High-speed motion

pictures were taken at 200 frames per second. These films constitute the basic set

' of test data. The low positive accelerations needed for test conditions 11 and 12

were provided by a cold gas thrust system which is integral to the test module of the

LMSC drop-tower facility.

The response of the liquid free surface at the tank wall following the reduction in

gravity level is indicated in Fig. 3-7 which shows the trajectories of the liquid surface

at the tank wall. The run numbers correspond to those on the film records. The

displacement is measured from the initial position under standard gravity conditions.

*Values taken from DuPont technical bulletins.
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The line through the data points is a "best estimate" of the average velocity of the

wave front. In Figs. 3-7(c), (d), and (e), this velocity is less than the predicted

value for Uav at the jet exit. Figure 3-7(a) shows the wave front trajectory for

Bo = 0 and We = 0. For a very low contact angle, such as that for Freon 113 on

Lucite, the equilibrium position of the liquid at the wall would be 7 cm above the

initial flat interface position. The capillary response time for the liquid to arrive

at this elevation can be estimated from the following relation (Ref. 14):

1/2
_- = 0.45 (p R3/G) (3.8)

For the tank and liquids used in these tests, this relation yields 4 seconds, so that the

observed trajectory in Fig. 3-7(a) is only the initial stage of this liquid orientation.

Dividing this response time into the equilibrium distance gives an average reorientation

velocity of 1.8 cm/sec. The slope of the line in Fig. 3-7(a) is 2.4 cm/sec which rep-

resents the average velocity during the initial liquid rise period.

Figure 3-7(b) represents the lowest Weber number condition examined. Although the

transient behavior is not complete in the test time available, an indication of the

stabilizing effect of surface tension is evident in the "bending over" of the wall wave

trajectory during the last 0.2 seconds of the test.

By comparison, the wave front trajectories for conditions 8, 9, and 10 do not exhibit

this tendency toward a stabilized free surface. It is concluded that these high Weber

number conditions with zero Bond number (infinite Froude number) produce an un-

stable condition wherein the free surface was carried away by the momentum of the

boundary layer.

The influence of the tank Froude number when a low but nonzero acceleration force is

present is shown in Figs. 3-7(f) and (g). In both cases the Weber number was large

(the same as that for condition 9), indicating dominance of fluid inertia forces over

surface tension forces. However, it is seen that the stabilizing influence of the accel-

eration level attenuates the wave front velocity.
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The acceleration level for condition 11 was 10 times that for condition 12, and effec-

tively eliminated any appreciable surface rise.

These results indicate that for the flow patterns considered in these tests, the surface

tension forces become relatively ineffectual for Weber numbers greater than 16, and

that for finite Bond numbers the Froude number is the proper scaling parameter.

Under these conditions, the distance through which the liquid interface travels along

the wall following a rapid reduction in gravity level is proportional to the dynamic

head of the convective boundary layer flow as it approaches the free surface. This

may be seen by equating the initial kinetic energy of the flow to the potential energy

gained at the maximum height:

2
u __g

2 gc gc
(3.9)

or, introducing the Froude number based on tank radius and boundary layer velocity,

2
Fr - u - 2 _/R (3.10)

gR

where _ is the maximum liquid travel up the wall. The trajectory of a particle with

a known initial velocity can be calculated if the surface tension and viscous forces are

small compared with the acceleration force. This has been done for test condition 12

and the resulting curves are shown for several assumed values of initial velocity. The

trajectory using an initial velocity corresponding to the calculated average jet velocity

(13.6 cm/sec) does not agree as well with the data as one using the average wave

front velocity (10.2 cm/sec) measured for test condition 9. The best fit of the data

is obtained by using an initial velocity of 11.2 cm/sec, with a lag of 0.1 sec after the

change in acceleration. It is possible that some attenuation of the flow velocity and a

delay in the free surface response is caused by the vortex observed at the liquid sur-

face wall corner.
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Another phenomenon noted in the drop-test films was the appearance of a vertical flow

at the tank axis which followed the step change to a low or zero acceleration level.

This is a manifestation of a stagnation condition at the tank center due to the radial flow

pattern. Although a vortex flow pattern at the tank center was noted in the flow calibra-

tion tests during Phase I, it is expected that a certain portion of the boundary layer

kinetic energy of the radially directed free surface flow is brought to rest at the tank

centerline to produce a region of relatively high pressure and the central flow or

"hummock" of liquid noted in the films. The various features of the surface behavior

are noted in Fig. 3-8, which is a typical frame taken from one of the drop-tower test

films.

For test conditions 13 and 14, a ring baffle was installed in the test tank 2.5 cm

above the standard-gravity surface position. The width of the baffle was one-tenth the

tank radius, or 1 cm. Two flow conditions at zero Bond number were tested as indi-

cated in Table 3-1. The high Weber number test (condition 13) produced a flow pattern

that rose along the wall, encountered the baffle, and was deflected inward toward the

tank axis after filling up the region below the baffle. This situation is diagrammed

in the following sketch. For this case, the boundary layer flow was not arrested but

was deflected into the tank center.
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Flow
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For the lower Weber number test (condition 14) the ring baffle was more effective in

controlling the wall flow. The flow encountered the baffle, filled in the region below

the baffle, and apparently stagnated at this point. No indication of flow past the level

of the baffle was apparent before the test terminated. A frame from the film of the

former test (Fig. 3-9) indicates the "flooded" baffle and the diverted flow directed

toward the tank center.

Several approximations of the experimental radial velocity distributions were used in

the MENSLM computer program to determine the sensitivity of the predicted limiting

Weber number to the normalized velocity distribution used. These results are shown

in Fig. 3-10. The limiting Weber numbers obtained from the program are represented

by straight lines for 1 -< Bo -< 200 and for the indicated velocity distributions. The

lines have the general form We cc Bo _ " Also shown are the corresponding limiting

Weber numbers for Bo = 0. Curve 1 represents the average of the curves shown in

Fig. 3-1; curves 2 and 3 are based on velocity distributions shown in Fig. 3-6.

A certain degree of ambiguity is apparent when one attempts to correlate the results

of the test program with the analytic predictions. Early in the program, a Weber num-

ber stability criterion of 4, based on boundary layer thickness and velocity was deter-

mined using a rectangular velocity distribution. The test conditions were chosen

based on this criterion. It was subsequently determined that for such cases in which

the assumed wall velocity is not zero, much higher limiting Weber numbers are

obtained compared with those obtained using the distributions of Fig. 3-6 which have

zero velocity at the wall. Thus, the stability criteria shown in Fig. 3-10, based on

the approximations to the experimentally determined subsurface radial velocity distri-

butions of Fig. 3-6, are lower than the Weber numbers investigated during drop

testing.

The precise relation between jet velocity (average or maximum) and the maximum or

characteristic subsurface velocity is not entirely clear, although the similarity between
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individual normalized velocity distributions has been demonstrated. Examination of

Fig. 3-6 indicates that a reasonable approximation of the maximum radial component

of the subsurface velocity is

= 0.67u
Us jetm

u = 0.67u
s m

Shown in Fig. 3-i0 are the two experimental points obtained at reduced gravity levels

and the condition at zero gravity and lowest We value (condition 7). These points are

shown for three assumed maximum surface velocities: u s = u m, u s = 0.67 u m and

u s = measured wavefront velocity during zero-gravity (from Fig. 3-7). Except for

the test at Bo = 740, the resulting Weber numbers are greater than the limiting

values predicted by the program. However, in both these cases a tendency toward

free-surface stability was noted. Therefore, the predictions of the MENSLM program

are apparently conservative.

Figure 3-10 can be considered a map of the various force-balance regimes considered

in this investigation. All points to the left of the Bo = 1 line are in a surface-tension

dominated regime with respect to gravity forces. In this region, those points below

We s = 4 are also surface-tension dominated with regard to fluid inertia forces and

the free surface is "stable" in the common sense of the term; that is, a free surface

exists. Above this region no free surface exists and one can expect inertia forces to

carry away the free surface. To the right of the Bo = 1 line is a regime dominated

by gravity-induced body forces. The term stability in this regime must be modified

to include the effect of gravity. The curve on Fig. 3-10 obtained from the MENSLM

program for 1 --< Bo ---< 200 would indicate that a combination of surface-tension and

gravity forces produce a stability limit. In this region, it is largely the gravity forces

that govern the condition of free surface stability. This is probably the reason for the

upward trend of the stability limit curve in this region. Points that lie along the line

Fr = i, but are above the "stability limit" curves, are stable if liquid-rise heights at

the wall that are equal to the tank radius are acceptable. In this case, the free surface

is stabilized by the local gravity level.
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It should be pointed out that the effect on the subsurface velocity distribution of a change

in the surface shape resulting from the reduced gravity level has not been determined.

It is reasonable to expect that the change in surface shape will have an effect on the

surface velocity distribution, which is not accounted for in the analysis. Also, for a

highly wetting liquid where the interface becomes highly distorted at the container wall

during low gravity conditions, a small computing mesh size should be used to define

adequately the free surface limit. Mesh sizes (integration step size At) of 0.01 and

0.1 were used to obtain the results shown in Fig. 3-10.

3.3 APPLICATION OF EXPERIMENTAL RESULTS TO VEHICLE DESIGN

Application of the results of this experiment to vehicle design is relatively straight-

forward if a characteristic boundary layer velocity can be determined. The velocities

characteristic of natural convection boundary layers in large cryogenic stages at

standard or larger gravity conditions yield very large tank Weber numbers. This

indicates an inertia-dominated regime after the high vehicle acceleration is reduced

to zero. Accordingly, surface tension forces will be of little aid in providing the

stabilizing force needed by the free surface to contain the boundary layer flow.

For a large cryogenic stage such as the S-IVB, an average velocity on the order of

1 ft/sec in the convective boundary layer in the region of the liquid free surface has

been calculated (Ref. 15). The Weber number is 9.3 × 103, based on a tank radius

of 130 inches with liquid hydrogen as the propellant. This is much greater than the

Weber number of 50 which was seen to result in an unstable condition in the test tank.

In the absence of an acceleration-induced body force on the liquid, the boundary layer

flow would continue through the free surface into the ullage.

Two means for containing the boundary layer liquid are baffles, to divert the flow and

dissipate the associated kinetic energy, and stabilization of the flow with positive

vehicle acceleration. If it is desired to keep the wall wave rise below one tank radius,

the Froude number relation of Eq. (3.10) yields a required acceleration level of

1.43 x 10 -3 go for the S-IVB stage.
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Section 4

CONCLUSIONS

An extensive test program was conducted using noncryogenic fluids to study the pheno-

menon of liquid-ullage coupling. Predictions of pressure rise, interface mass trans-

fer and ullage temperature rise obtained from the extended liquid-ullage coupling model

agree well with the data when appropriate values for h v , h L , and I are used.

The liquid-ullage coupling model successfully predicted the results of tests conducted

with controlled ullage venting.

The extended liquid-ullage coupling model which accounts for the influence of nucleate

boiling in the liquid free-convection boundary layer yields predictions which agree well

with data obtained from tests with boiling.

Available hydrogen data were surveyed and the results from one of the tests conducted

at MSFC on a full scale S-IV tank were found to be suitable for comparison with pre-

dictions from the liquid-ullage coupling model. Values for h, h L and I were

obtained which yielded predictions agreeing well with the data.

The results of the noncryogenic tests and the usable hydrogen data were used to develop

the following correlations for h , h L and I :

Nu L = 3.24 x 10 -4 (GrH)0"433 (4.1)

- c

0 .v (4
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The correlation for I is qualified as preliminary since only one data point could be

obtained from the hydrogen tests. As more data become available, further confirma-

tion of this correlation will be possible.

Free surface radial velocity distributions have been determined for a range of simu-

lated convective boundary layer velocities. It has been shown that, when normalized,

these distributions have a similar form.

Based on this normalized velocity distribution, a free surface stability criterion for a

tank bond number of zero is Weav _ 4.

For low but nonzero positive tank acceleration (0 < Bo < 100), the stabilizing effect of

the gravity level is added and the limiting stability criterion may be approximated by

We -< 10 (Bo)0"35 for 0.1 _< Bo _ 100
av

At tank Bond numbers greater than 100, the effect of surface tension is negligible and

a proper scaling parameter is the Froude number. The jump height is

= R Fr/2 (4.4)

where _ is the height along the wall that the convective boundary layer momentum

will carry the liquid.

Experimental data indicate that these Weber number stability criteria are conservative

and that the Froude number relation is valid in the range of tank Bond numbers investi-

gated.

For large Weber number flows (Weav > 400) at zero Bond number, an unsubmerged

ring baffle of width 0.1R deflected the wall flow but did not arrest it. For Weav = 50,

some effectiveness in stopping the wall flow was observed. These results apply to tanks

with a boundary layer thickness at the free surface of the order of five percent of the

tank radius.

4-2

LOCKHEED MISSILES & SPACE COMPANY



2-05-66-1

Section 5

REFERENCES

1. Lockheed Missiles & Space Co., Analytical and Experimental Study of Liquid

Orientation and Stratification in Standard and Reduced Gravity Fields, 2-05-64-1,

Contract NAS 8-11525, Sunnyvale, Calif., Jul 1964

2. - .... , Analytical and Experimental Study of Stratification and Liquid-Ullage Coup-

ling, 2-05-65-1, Contract NAS 8-11525, Sunnyvale, Calif., Aug 1965

3. - .... , Theoretical and Experimental Studies of Zero-G Heat Transfer Modes,

.

Monthly Progress Report for the Period 27 March 1966 to 1 May 1966, Contract

NAS 8-11525, Sunnyvale, Calif., 16 May 1966

..... , Theoretical and Experimental Studies of Zero-G Heat Transfer Modes,

Monthly Progress Report for the Period 1 November 1964 to 29 November 1964,

Contract NAS 8-11525, Sunnyvale, Calif., 4 Dee 1964

5. - .... , Theoretical and Experimental Studies of Zero-G Heat Transfer Modes,

Monthly Progress Report for the Period 31 October 1965 to 28 November 1965,

Contract NAS 8-11525, Sunnyvale, Calif., 6 Aug 1965

6. L. S. Tong, Boiling Heat Transfer and Two-Phase Flow, New York, John Wiley &

Sons, 1965

7. Lockheed Missiles & Space Co., RIFT Cryogenics Flui d Flow, 40-Inch Tank Gross

Flow Tests, Final Report, NSP-63-70, 12 Jun 1963

8. - .... , Liquid Hydrogen Stratification Data Analysis, 40-Inch Diameter Tank Gross

Flow Tests, by F. L. Hines, LMSC A304894, 21 Nov 1965

9. Martin Company, Analytical and Experimental Determination of Liquid Hydrogen

Temperature Stratificatior,, Final Report, NASA-CR-63-5, Apt 1963

10. Lockheed Missiles & Space Company, Theoretical and Experimental Studies of

Zero-G Heat Transfer Modes, Monthly Progress Report for the Period 29 May 1966

to 26 Jun 1966, Contract NAS 8-11525, Sunnyvale, Calif., 11 Jul 1966

5-1

LOCKHEED MISSILES & SPACE COMPANY



2-05-66-1

11. Lockheed Missiles & Space Company, Theoretical and Experimental Studies of

Zero-G Heat Transfer Modes_ Monthly Progress Report for the Period 30 May

1965 to 27 Jun 1965, Contract NAS 8-11525, Sunnyvale, Calif., 7 Jul 1965

12. Abromovich, G. N., The Theory of Turbulent Jets_ M.I.T. Press, 1963, pp.

475-489

13. Stanford University, Department of Mechanical Engineering, Use of Hydrogen

Bubbles for Quantitative Determination of Time-Dependent Velocity Fields in

Low-Speed Water Flows_ by F. A. Schraub, S. J. Kline, J. Henry, P. W.

Runstadler, Jr., and A. Littell, Report MD-10

14. - .... , Capillary Hydrostatics and Hydrodynamics at Low-G_ by W. C. Reynolds,

M. A. Saad, and H. M. Satterlee, TR-L6-3, Sep 1964

15. Swalley, F. E., Platt, G. K., Hastings, L. J., "Saturn V Low Gravity Fluid

Mechanics Problems, " Paper 1, Proceedings, Symposium on Fluid Mechanics

and Heat Transfer Under Low Gravity_ Jun 1965, Palo Alto, Calif.

16. Shanks, E. B., Higher Order Approximations of Runge-Kutta Type_ NASA-TN-D-

2920, Sep 1965

5-2

LOCKHEED MISSILES & SPACE COMPANY



2-05-66-1

Appendix

MENSLM COMPUTER PROGRAM

SUMMARY

MENSLM (Meniscus Shape with _Liquid Motion) is a computer program written in

FORTRAN IV for calculating the meniscus shape of a liquid in a cylindrical container,

taking into account the effects of fluid motion. The program involves numerical in-

tegrations, using a fourth-order Runge-Kutta scheme, of a nonlinear ordinary differ-

ential equation of second order with two-point boundary conditions. Details of the

program, including input-output formats, are described in this Appendix.

DESCRIPTION OF NUMERICAL METHODS

The differential equation and boundary conditions for the free surface of a liquid in a

cylindrical container have been given in Eq. (2.9) of Ref. 1. The equation is

1 d [ rFr ]
rd_ (i + F2r)i/2]- 2 Frr (0) - B°F

We
U 2 = 0 (1)

2

and the boundary conditions are

F (0) = 0 (2)
r

F (1) = cot0 (3)
r

where

F = liquid height above datum at r = 0

henceF(0) = 0

normalized by container radius;
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r = radial distance normalized by container radius

Bo = g R 2 p/cr, Bond number (Denoted as B in program language)

We = u 2 R p/c r, Weber number based on maximum surface velocity
s

container radius R. (Denoted as W in program language)

U = local velocity divided by the maximum surface velocity.

in program language)

0 = contact angle at container wall

p = liquid density

= liquid surface tension

g = acceleration

u and
s

(Denoted as V

Because of the two-point boundary conditions, the numerical solution requires itera-

tions by assuming Frr ( 0 ), integrations to r = 1, and checking 0. For a given

Bond number and velocity distribution, there exists a limiting Weber number above

which numerical solutions cannot be obtained within the numerical model used. This

limiting Weber number is obtained by numerical iterations.

Numerical integration of Eq. (1) is performed using the common Runge-Kutta fourth-

order formula (Ref. 16) with a uniform input integration step size. One nonlinear

characteristic of Eq. (1) is that F r may change from a small number to a very large

number in one integration step, if the assumed Frr (0) is not near the correct value.

To prevent computer overflow, the values of the change of F r and F are checked

at each of the four Runge-Kutta integration steps. The integration process is stopped

when these values exceed a large number and the iteration cycle is continued with a

more appropriate value of Frr ( 0 ).
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Let

FPRIM IFr , We, U, ]3o, F, Frr(0 ), Fr1
r(1 + Y2r) 1/2

= e + BoF+ 2 ) -r -2- Frr ( 0

F
r

(4)

Then, Eq. (1) may be written as

r

dFr - FPRIM IF r
d r [

, We, U, Bo, F, Frr(0), Fr]
r (1+ F2r) 1/2

(5)

dF
- Fdr r (6)

Let

H = rn+l - rn' integration step size (7)

FKI = H • F r (rn) (8)

FKPI = H • FPRIM

fFr (rn), We, U (r n
), Bo, F (r n), Frr(0),

F r (r n ) }[1+ F 2 )11/2'rn r ( rn

(9)
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FKP2 = H -

F (r n

FK2 = H

FPRIM f[Fr (r n) + --

FK1 J) + T ' Frr(0)'

FK3 = H

f[

FKP3 = H FPRIM][F r (r n) + --

[

F(rn) + --F ' Frr (0)'

FK4 = H

FKPI ]F r (r n) +

2 , We, U r n

Fr (rn) + 2

H 1 FKPI 2 II/2(rn+ _- ) 1 + [Fr (rn) + 2 ]

FKP2 ]F r (r n) +

FKP2]2 , We, U(r n + _-),Bo,H

FK_21 }
IFr (rn) + 2

1/2

FKP4 = H FPRIM

IF (rn) + FK3

IF r (rn)+ FKP3}, We, U (r n + H), Bo,

, Frr(0) ,
IF r (r n) + FKP31

I r'rn 1
FFK = FKI, FKPI, FK2, FKP2, FK3, FKP3, FK4, FKP4 consecutively

(i0)

(11)

(12

(13)

(14)

(15)
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Then, whenever

]FFKI -> 107 (16)

the integration process is stopped and the iteration cycle is continued with a more

appropriate value of Frr( 0 ). If IFKP4 I < 107 , the integration is advanced to the

next step with

F(rn+l) = F(rn)_ (FKI+ 2 • FK2 +2 • FK3 + FK4)/6 (17)

Fr(rn+l) = Fr(rn) + (FKP1 + 2. FKP2 + 2 • FKP3 + FKP4)/6 (18)

Then, if IFr(rn+l) I >- 105 , the integration is again stopped and the iteration cycle is

continued with a new value of Frr (0) . If I Fr(rn+l) l < 105 , the integration is con-

tinued. The above process is repeated until the wall, r = 1, is reached. If the

contact-angle boundary condition is not satisfied, the iteration process is continued

with a new value of Frr ( 0 ). The iteration method for obtaining a correct value of

Frr(0) = FRR is described schematically in Fig. A-1. New lower-bound or upper-
bound values of FRR are calculated whenever the conditions I FFK] - 107 < 0, I F r ]

- 105< 0, or 10'- 0] - 60-<0 are not satisfied. The value of contact-angle accuracy

60 and the FRR step size (denoted as DELTA and DELFR in machine language) are

input. Typical values used are DELTA = 0.5 deg and DELFR = 1, 0. The value of

ZFRR used is 2.0 × 10 -8 (see next paragraph). The input is shown in Fig. A-2.

Observation of the numerical values of Frr(0), as the iteration progresses, indicates

that only a very small change of Frr( 0 ) values is necessary to go from no solution to

a solution. Therefore, the following criterion for defining the limiting Weber number

is selected. Let

Z FRR -_ _ -
Frr (0)n - Frr(0)n+l [

Fr_ 0 )n+l I (19)
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INPUTS

._LJ L"_'_"_J_I ...................... I .1_.1 [ .L._.I_L I 1..I.I. I [ 1.1 l"sJ,,12J_J2J__t, I, I ,I,I, ,o ' ..... ,....... I .... J,ol,,J,_,3j,,_ .... _,, _ l_.lz, l .............................

.l ......................... J ..................

...... '. : _" ',........ I ....... : .......... i ..... I .................................

[_ ...........PRiNT-----UI_ ....... =- WEL - " __i ....................................-T ......... : : ; ....... :...... _ . . --I .....................................

.......................................... OPTIONAI.-;I'ABUI.ATED VELOCITIES-( IFLAG < 0)

I

............. I ( Last Card )

1

....... %_--indicaies end of tabulated input

I
I ....................................

I
J ...............

Fig. A-2 Computer Input
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where n and n + 1 are numbers of iterations. If _ > 2 × 10 -8 , iteration with respect

to Frr (0) continues with the input Weber numbers. Further iterations with respect to

Frr (0) will eventually either yield a valid solution for the input Weber number or make

-< 2 x 10 -8 . If _ _< 2 × 10 -8 , the Weber number input is greater than the limiting

value. The next iteration then begins with a lower value of We given by

+ W L )/2 (20)Wen+l = (Wen n

where W L is a lower-bound We at the n th iteration. A new upper-bound W Un+ 1
n

= We is also set. If, during subsequent iterations of values of We, the lower-bound
n

and upper-bound values differ by 5 percent or less, the limiting Weber number is con-

sidered reached. Since the surface velocity distribution is generally not accurately

known, a 5-percent accuracy in the limiting Weber number should be adequate. The

iteration method for obtaining a limiting We = W E and the print output control are

described schematically in Fig. A-3. The value of the lower-bound Weber number,

WEL, and the print-control variable, PRINT, are input. The options for PRINT are

as follows:

PRINT

< 0.0 print limiting We value only

= 0.0 print surface shape for limiting We

> 0.0 print surface shape for all We values during

iteration

The current trial values of W E are also printed out during iterations.

Two options are provided in specifying the surface velocity distributions. One option

employs a table input (using Subroutine TBLP) of values of U versus r. The second

option (using subroutine GFUN) involves the use of analytic velocity distribution func-

tions. The function considered first during this study was the ,'double-sine" velocity
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Fig. A-3 Weber Number Iteration and Print Control Schematic
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distributiongiven by the following expressions:

sin(r/rm) , 0 -< r -< rm

U = l-r

sin 2 r_n , r > rm

where r m is the value of r at U = 1, corresponding to u = u s However, any one-

parameter distribution function may be used in place of Eq. (21) in the second option.

A sample of the output format is shown in Fig. A-4.
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_EXICASE

WEBER NUMBER .100000+04 BOND NUMBER .100000+02 CONTACT ANGLE .500000+01

ANALYTIC VELOCITY DISTRIBLITION

WE= .10000000+04 TOO LARGE, WEL= .O000000n FRRI= -.11457285+02 FRR= -.11457285+02

NEXT TRIAL WE = .S&O_DgO_OZu-_

WE= .50000000+03 TOO LARGE, WEL= .O000000Q FRet= -.76118433+01 FRR= -.76118432+01

NEXT TRIAL WE = .25000000+03

WE= .25000000+03 TOO __ALLG__ _ELA___

NEXT TRIAL WE = .125n0000+03

,900_ Q_)O_ ..... EEE[_ .... =._117_1+nl FRR= -._811718J)*a31_

WE= .12500000#03 TOO LAPGE, WEL= .00000000 FRRI= -.30079047+01 FRR= -.30079047+01

NEXT TRIAL WE : .o25r!0000+02

WE= .62500000+02 TOO LARGE, WEL= .00000000 FRRI= -.15509483+01 FRR= -.15509484+01

NEXT TRIAL WE = .31250000+02
YIELDS SOLUTION WITH FRR= -.62512207-00

NEXT TRIAL WE = .46875000÷02
YIELOB SOLUTION wITH ERR= -.10964813+01

NEXT TRIAL WE = .546_7500+02

YIELOS SOLUTION WITH FRR= -.13267412+01

NEXT TRIAL WE = .58573750+02

WE= .58593750+02 TOO LAqGE, WEL= .54687500+_2 FRRI= -.14397453+01 FRR= -._@1454+01__

NEXT TRIAL WE : .56640625+02

F DOUBLE PRIME AT R = 0 -.13834558+01

R F EB_LT_L___

• 000000 .000000 .000000

• 500000-01 -.170471-02 -.664479-ni

• 100000+00 -.648361-02 -.122772+00
• 150000-00 -.138213-01 -.169330-00

• 200000-00 -.233091-01 -_%%fzrO0

• 250000-00 -.346963-01 -.245702-00

• 300000-00 -.478482-01 -.2B0122-00

• 350000-00 -.626855-01 -.313099-00

• 400000-00 -.791233-01 -.343924-00

• 450000-00 -.970105-01 -.370617-n0

• 500000-00 -.i16060+00 -.389720-00

.550000-00 -.155771-00 -.596036-00

• 600000-00 -.155336-00 -.382539-00

.650000-00 -.173555-00 ..... -._, %_753-00

• 700000-00 -.ISs7S9-O0 -.261554-00

.750000-00 -.193929-00 -.135179-00

.800000-00 -.201_9T00_ .532607-01

.850000-00 -.191964-00 .3_3736-00

.900000-00 -.162814-00 .906247-00

.950000-00 -.7765_9-01 .374094+01

.lO0000+O1 .B46323-00 .114142+02

Fig. A-4 Sample Output Format

A-II

LOCKHEED MISSILES & SPACE COMPANY




